Fórmula de la densitat de la matèria. Fórmules de densitat relativa

Taula de continguts:

Fórmula de la densitat de la matèria. Fórmules de densitat relativa
Fórmula de la densitat de la matèria. Fórmules de densitat relativa
Anonim

Després que els estudiants s'hagin familiaritzat amb el concepte de massa i volum de substàncies en física, estudien una característica important de qualsevol cos, que s'anomena densitat. L'article següent està dedicat a aquest valor. Les preguntes sobre el significat físic de la densitat es revelen a continuació. També es dóna la fórmula de la densitat. Es descriuen els mètodes per a la seva mesura experimental.

El concepte de densitat

Comencem l'article amb un enregistrament directe de la fórmula de la densitat de la matèria. Sembla així:

ρ=m / V.

Aquí m és la massa del cos considerat. S'expressa en el sistema SI en quilograms. A les tasques i a la pràctica, també podeu trobar altres unitats de mesura, per exemple, grams o tones.

El símbol V de la fórmula indica el volum que caracteritza els paràmetres geomètrics del cos. Es mesura en SI en metres cúbics, però també s'utilitzen quilòmetres cúbics, litres, mil·lilitres, etc.

La fórmula de la densitat mostra quina massa d'una substància conté una unitatvolum. Utilitzant el valor de ρ, es pot estimar quin dels dos cossos tindrà un pes més gran amb volums iguals, o quin dels dos cossos tindrà un volum més gran amb masses iguals. Per exemple, la fusta és menys densa que el ferro. Per tant, amb volums iguals d'aquestes substàncies, la massa de ferro superarà significativament el mateix valor d'un arbre.

El concepte de densitat relativa

Líquids de diferents densitats
Líquids de diferents densitats

El mateix nom d'aquesta quantitat indica que el valor en estudi per a un cos es considerarà en relació amb una característica similar per a un altre. La fórmula per a la densitat relativa ρr té aquest aspecte:

ρrs / ρ0.

On ρs és la densitat del material mesurat, ρ0 és la densitat respecte a la qual el valor ρ r es mesura . Evidentment, ρr no té dimensions. Mostra quantes vegades la substància mesurada és més densa que l'estàndard seleccionat.

Per a líquids i sòlids, com a estàndard ρ0, trieu aquest valor per a l'aigua destil·lada a una temperatura de 4 oC. És a aquesta temperatura on l'aigua té una densitat màxima, que és un valor convenient per als càlculs: 1000 kg/m3 o 1 kg/l.

Per als sistemes de gas, s'acostuma a utilitzar la densitat de l'aire a pressió atmosfèrica i temperatura 0 com a estàndard oC.

Dependència de la densitat de la pressió i la temperatura

El valor estudiat no és constant per a un cos concret,si canvieu la seva temperatura o pressió externa. Tanmateix, els líquids i els sòlids són incompressibles en moltes situacions, el que significa que la seva densitat es manté constant a mesura que canvia la pressió i la temperatura.

La influència de la pressió es manifesta de la següent manera: quan augmenta, les distàncies interatòmiques i intermoleculars mitjanes disminueixen, fet que augmenta el nombre de mols d'una substància per unitat de volum. Per tant, la densitat augmenta. S'observa una clara influència de la pressió sobre la característica en estudi en el cas dels gasos.

Densitat de l'aigua en funció de la temperatura
Densitat de l'aigua en funció de la temperatura

La temperatura té l'efecte contrari a la pressió. Amb l'augment de la temperatura, l'energia cinètica de les partícules de matèria augmenta, comencen a moure's de manera més activa, la qual cosa comporta un augment de les distàncies mitjanes entre elles. Aquest darrer fet provoca una disminució de la densitat.

Un cop més, aquest efecte és més pronunciat per als gasos que per als líquids i els sòlids. Hi ha una excepció a aquesta regla: això és l'aigua. S'ha establert experimentalment que en el rang de temperatures 0-4 oС la seva densitat augmenta amb l'escalfament.

Cossos homogenis i no homogenis

Metalls amb diferents densitats
Metalls amb diferents densitats

La fórmula de densitat escrita més amunt correspon a l'anomenada mitjana ρ per al cos considerat. Si hi assignem un petit volum, aleshores el valor calculat ρi pot diferir molt del valor anterior. Aquest fet està relacionat amb la presència d'una distribució no uniforme de la massa sobre el volum. En aquest cas, la densitatρi s'anomena local.

Tenint en compte la qüestió de la distribució no uniforme de la matèria, sembla interessant aclarir un punt. Quan comencem a considerar un volum elemental proper a les escales atòmiques, es vulnera el concepte de continuïtat mitjana, la qual cosa significa que no té sentit utilitzar la característica de densitat local. Se sap que gairebé tota la massa d'un àtom es concentra al seu nucli, el radi del qual és d'uns 10-13 metres. La densitat del nucli s'estima amb una xifra enorme. Això és 2, 31017 kg/m3.

Mesura de la densitat

A d alt es va demostrar que, d'acord amb la fórmula, la densitat és igual a la relació entre la massa i el volum. Aquest fet ens permet determinar la característica especificada simplement pesant el cos i mesurant-ne els paràmetres geomètrics.

Si la forma del cos és molt complexa, el mètode universal per determinar la densitat serà el pesatge hidrostàtic. Es basa en l'ús de la força d'Arquimedes. L'essència del mètode és senzilla. Primer es pesa el cos a l'aire i després a l'aigua. La diferència de pes s'utilitza per calcular la densitat desconeguda. Per fer-ho, utilitzeu la fórmula següent:

ρ=ρl P0 / (P0 - P l),

on P0, Pl - pes corporal en aire i líquid. En conseqüència, ρl és la densitat del líquid.

Pesatge hidrostàtic de cossos
Pesatge hidrostàtic de cossos

El mètode de pesatge hidrostàtic per determinar la densitat, segons la llegenda, va ser utilitzat per primera vegada per un filòsof de SiracusaArquimedes. Va ser capaç, sense violar la integritat física de la corona, de determinar que no només s'utilitzava or, sinó també altres metalls menys densos per fer-la.

Recomanat: